CARTIER DIVISORS

ABSTRACT. This document is meant to be a clarification on the notion
of Cartier divisors.

1. CARTIER DIVISORS

1.1. Meromorphic functions as sections of line bundles. The follow-
ing generalize the idea of meromorphic functions from complex geometry.
Let (X,Ox) be a ringed space. We define for an open U

SU)={s€0x((U)|VeeU s, € Oxy not a divisor of zero}

Note that we have obvious maps S(U) — S(V) if U C V, and that each
S(U) is a multiplicative subset of Ox (U).

Definition 1.1 (Meromorphic functions). Let (X, Ox) be a ringed space.
We define Kx the sheaf of meromorphic functions as the sheaf associated to
the following presheaf :

U— S(U)tox(U)

Note that we have a natural injection : Ox — Kx.
The following definitions and propositions holds in a vast setting.

Definition 1.2 (Cartier Divisors). Let (X, Ox) be a ringed space. Consider
the short exact sequence of abelian sheaves :

1- 0% =Ky = K5 /0% =1

The group of Cartier divisors CaDiv(X) is defined to be : HY(X,K%/0%).
A global section can be represented as a collection of pairs (f;, U;) where
X = UU; and f; € K(U;)™, such that }% € O(Uj;)*. The Cartier class
group CaCl(X) is defined as the cokernel of H(X,K%) — HY(X,K%/0%)

We can think as a Cartier divisor (f;,U;) as the “zero set” of the zeroes and
poles of the f;’s counted with multiplicities.
The short exact sequence of abelian sheaves

1—- 0% =Ky = K5 /0% — 1
gives a connecting morphism (which factors through CaCl(X))
O(—) : CaDiv(X) — Pic(X)

Using Cech cohomology we see that this morphism sends a divisor D =
(fi, Us) to the cocycles (Uij, %) (or it’s inverse, as we are dealing with abelian
sheaves, both maps fit in the exact sequence so this does not matter for our
purposes). This can be interpreted as the line bundle O(D) defined on U;
by %OUZ.. We will make more precise this last statement in the following

lemmas.
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Lemma 1.1. Let D be a Cartier Divisor. Let U = |JU; = |JVa be two
coverings such that D = (fi,U;) = (9a, Vo). Then

{se KU) Vi sfieOx(Ui)}={teKU)|Va tgaecOx(Va)} CK(U)

Proof. The equality (f;,U;) = (ga,Va) means that there exists common
refinement (Wy;;) of both covers such that for all i, o, j we have :

;i S Ox(WM'j)X

So we get

= Vj Sfi S O)((Wm'j
= Vj 80 € O)((Wm'j

has the setting is symmetric we get our claim. U

Proposition 1.2 (Associated line bundle to a Cartier divisor). The mor-
phism
O(—) : CaDiv(X) — Pic(X)

can be realized by seeing sections of these line bundles as meromorphic func-
tions

OD)(U) ={s e KU) | Vi sfieOx(U)}cK(U)
for any U = |JU; such that D = (f;,U;).

Proof. If D is given by f; € K(U;)*, then we have O(D)(U;) = %(’)X(Ui)

and the section % € O(D)(U;) gives a trivialization. Moreover we have :

O(D)y,.

Ui

OUij f—]> OUij
fi

so the cocycles of the line bundle O(D) are (%) as wanted. O

Proposition 1.3. If X is an integral scheme, O(—) defines an isomorphism
CaCl(X) — Pic(X).

Proof. If X is integral K% is the constant sheaf with value K (X), therefore
flabby, therefore acyclic. The claim now follows from the definition of CaCl
and the long exact sequence in cohomology. O

Remark. The way to interpret sections of O(D) is that they are meromorphic
functions that can have poles on D. This means that if D is given locally
by g with f and g are functions in O, then functions in O(D)(U) can have
poles where f have zeroes and has to have zeroes where g has zeroes.
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FIGURE 1. The section s can be interpreted as a meromor-
phic function with a pole on D.

Remark. We can understand how “sections of line bundles” can be seen as
meromorphic functions with the following picture. Imagine that locally a
Cartier D is given by f € O(U). Then note that 1 € K(U) is in O(D)(U).
In the following picture we drew this section as 1p. We will see in the
next section that 1p vanishes exactly on V(f) = D. Now, sections of this
line bundle on U can be viewed as meromorphic functions by the following;:
where 1p does not vanish (does not intersect the zero section), it gives a
trivialization of the fiber, so outside of the fiber of D, we can associate the
section to a function to Al. More precisely let s be a section of O(D). Then
at every point x € X \ D we have that

Ip: k(z) = L(x)

if we denote the inverse map by s then sl(—? is a legitimate number in k(z).

We even have an isomorphism on U = X \ D
1p: 0y S Ly

SO ‘f—g € Oy is a morphism to Al

We called in the drawing where 1p and the zero section cross (the fiber over
D) the oo-line: if a section cross this line not intersecting the zero section
then the “associated function” will have a pole on D. If the section cross
the zero section in the fiber of D then we do not know what happens : the
value of the function can be 1, 0, any scalar or again a pole depending on
how the section approaches the intersection.
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1.2. Effective Cartier Divisors and line bundles with a non-zero
divisor section. We now concentrate our attention to Cartier divisors that
have “only positive multiplicities” so are “truly” geometric.

Definition 1.3 (Effective Cartier Divisor). A Cartier divisor D = (f;,U;)
is said to be effective if f; € O(U;) for every i.

Remark. If D = (f;,U;) is effective, then by looking at the ideal sheaf gen-
erated by f;’s in Ox we see that Effective Cartier Divisors are in one to one
correspondence with ideal sheaves that are line bundles. In what follows
(X,0x) is a scheme.

The above remark shows that effective Cartier Divisors are in one to one
with the following concept.

Definition 1.4 (Geometric Cartier Divisor). Let X be a scheme. A Geo-
metric Cartier divisor is a closed subscheme V' (Z) such that Z is line bundle.

Definition 1.5 (Closed subscheme associated to a section of a line bundle).
Let £ be a line bundle on a scheme X and let s € H°(X, L) be a global
section. We define V'(s) as the closed subcheme associated to the following
ideal sheaf :

I, = im(£Y =% Ox)
Remark. The following lemma shows that this is indeed the tempting defi-

nition - note that the above definition gives a scheme and not only a closed
topological space.

Lemma 1.4. Topologically we have V(s) = {z € X | s(xz) =0}

Proof. The assertion can be checked locally on X so we can suppose that
X is affine say equal to Spec(A) and that £ is trivial. So applying the
definition, an element a € A is sent to :

AY =Hom(A, A) — A
(1—z)—za
so we get the claim because the image is precisely (a). U
Definition 1.6 (Non-zero divisor section). Let £ be a line bundle on X. A
section s € £(X) is said to be a non-zero divisor if :
Ox > L
is injective.
So assembling definition we get the following lemma :

Lemma 1.5. A section s € L£(X) is a non-zero divisor if and only if £¥ =2

Ox s injective, and the associated closed subscheme is a geometric Cartier
divisor.

Remark. Note that for any geometric Cartier divisor or equivalently for any
effective Cartier divisor, the line bundle O(D) described in the preceding
section has a canonical global section 1p, where we take this notation for
the meromorphic function 1 in O(D)(X).
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Lemma 1.6 (Any Geometric Cartier has can be realized has the vanishing
locus of a global section of a line bundle). Let D be an effective Cartier
dwwisor. Then the natural section 1p described above is a non-zero divisor
and we have V(1p) = D if we see D as a geometric Cartier divisor.

Proof. If locally D is given by a function f;, then note that trivializing and
dualizing, evaluating at 1p is evaluating at f;, thus finishing the proof. [

The next proposition is the main result of this section :

Proposition 1.7 (Correspondence between Geometric Cartier Divisors and
line bundles with a fixed non-zero divisor section). Let X be a scheme. Then
we have the following correspondence :

{ Effective Cartier divisors on X} <> {(L,s) | Ox = L}/O3(X)
D~ (O(D),1p)
s
—,U;) E,s
(<P' ) (L, 5)

)

where 2; means the image by the inverse of a local trivialization Ox L.

Proof. A precision: pairs (L, s) are up to isomorphism of the source Ox and
the target £. That is what we meant be quotienting out by O% (X).

Going from left to right to left is the identity because the image of 1p by
the trivialization are exactly the f;’s.

Note that going from right to left is well defined because a Cartier will not
change by a global multiplication by an element of Ox(X)*. As s is a a

non-zero divisor section, 2 is an element of & (U;) so invertible in IC(U;).

Moreover, we have é/fj to be % the cocycles of L so indeed in Ox (U;;)*
Now, note that the desired isomorphism of line bundles folows because £
and O(V(s)) have the same cocycles, and the isomorphism constructed in

this way sends 1p to s. U

This result is geometrically soothing. Take any algebraic variety X and
a codimension 1 closed subvariety D in it which happens to be a Cartier
divisor. This result tells us that we can always thicken by lines in a clever
way our variety X (the line bundle O(D) where X lives as the zero section)
and always find another copy of X in this thickening by lines (the section
1p) such that the intersection of the two copies are exactly D, in and this,
in both copies.

Ezample (Incidence divisor). Let X be a variety over a field k, such that
HY(X,0x) = k, for example if k algebraically closed or if X is a complete
intersection in a projective space. Or more generally: X being proper and
geometrically connected. Let £ € Pic(X) and V C H°(X, L) be a finite
dimensional linear subspace. Define |V| = Proj(S*(V*)). This is the moduli
space of geometric Cartier divisors of the form V(s) for s € V.

The goal is to define a divisor I' in the product X Xxj V such that the
k-rational points of the divisor are :

I(k) = {(z,V(s)) € X(k) x [V|(k) | z € V(s)}

that are pairs of a k-rational points in X together with a divisor V'(s) that
contains it. We describe the construction in what follows.
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Consider the box product £LX O(1) = p5 L ® pj;O(1) and recall that by
Kiinneth formula we have : HY(X x|V|, LKO(1)) = HY(X, £)®,H(|V],O(1)) =
H(X, L) ®;, V*. Let 0 € V ®V* be the element corresponding to the iden-
tity via the natural isomorphism V' ® V* = Hom(V, V). Then we define I'
by V(o).
We check that this is indeed what we wanted on k-rational points. Let
80,-..,5n be a basis of V. We have for (z,V(s)) € X(k) x |[V|(k), with
s =y \is;, that :

0= oz, V(s) = silx) @ 5 (V(s))

i=1

that up to an isomorphism is identified with

0= Z)\isi(ac) = s(x).
i=1



